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1. ABSTRACT

The use of unstructured mesh techniques for solving complex
aecrodynamic fiows is discussed. The principle advantages of
unstructured mesh strategies, as they relate to complex geometries,
adaptive meshing capabilities, and parallel processing are
emphasized. The various aspects required for the efficient and
accurate solution of aerodynamic flows are addressed. These
include mesh generation, mesh adaptivity, solution algorithms, con-
vergence acceleration and turbulence modeling. Computations of
viscous turbulent two-dimensional flows and inviscid three-
dimensional flows about complex configurations are demonstrated.
Remaining obstacles and directions for future research are also out-
lined.

2. INTRODUCTION

Over the last decade, much attention has been devoted to the
development and use of unstructured mesh methodologies within
the research community. This enthusiasm however, has not always
been shared by the applications and industrial community. The
promise of easily enabling the discretization of complex geometries
has been counterbalanced by questions of accuracy and efficiency.
Furthermore, the dearth of results conceming viscous flow calcula-
tions using unstructured meshes has produced skepticism concemn-
ing the value of unstructured mesh techniques for practical aero-
dynamic calculations.

There is no doubt that block-structured techniques have
proved extremely effective in discretizing very complex geometries.
However, unstructured grid techniques offer additional inherent
advantages which may not at first appear evident. The possibility of
easily performing adaptive meshing is perhaps the largest advan-
tage of unstructured grid methods. In fact, the implementation of
adaptive meshing techniques for structured meshes has generally
been found to incur unstructured-mesh type overheads [1]. Further-
more, although unstructured grid data-sets are irregular, they are
homogeneous (as opposed to block structured grids where
differentiation between block boundaries and interiors must be
made). One of the consequences of this property is that
unstructured-mesh type solvers are relatively easily paralielizable.
While unstructured mesh solvers always incur additional memory

and CPU-time overheads due to the random nature of their data-

sets, large gains in efficiency can be obtained by careful choices of
data-structures, and by resorting to more efficient implicit or
multi-level solution procedures. When combined with adaptive
meshing and parallelization, these can result in truly competitive
solution procedures.

In the following sections, the application of unstructured
mesh techniques to various aerodynamic fiow problems are dis-
cussed. The particular approach chosen (i.e. a vertex based Galer-
kin finite-element discretization with additional artificial dissipation
terms and an unstructured multigrid algorithm for convergence
acceleration), represents the methodology adopted over several
years of research by the author, and constitutes but one of several
competing approaches. Both inviscid and viscous flows are con-
sidered, although exclusively steady-state solution procedures are
discussed. Both two and three-dimensional problems are addressed.
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3. SOLUTION PROCEDURE

In non-dimensional conservative vector form, the Navier-
Stokes equations read
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p being the fluid density, u, v ,and w the cartesian velocity com-
ponents, and E the intemal energy. F, represents the convective
flux vector, the components of which are algebraic functions of the
conserved variables and the pressure, which itself can be related to
the conserved variables through the perfect gas relation. F, denotes
the viscous fiux vector, the components of which are functions of
the first derivatives of the conserved variables. Equation (1)
represents a set of partial differential equations which must be
discretized in space in order 10 obtain a set of coupled ordinary

- differential equations, which can then be integrated in time 10

obtain the steady-state solution. Spacial discretization is performed
using a Galerkin finite-element type formulation, The following
derivation is restricted to the two-dimensional case for the sake of
clarity, since the exiension from two-dimensions to three-
dimensions is entirely straight-forward. Multiplying equation (1)
by a test function ¢, and integrating over physical space yields
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Integrating the flux integrals by parts, and neglecting boundary
terms gives
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In order to evaluate the flux balance equations at a vertex P, ¢ is
taken as a piecewise linear function which has the value 1 at node
P, and vanishes at all other vertices. Therefore, the integrals in the
above equation are non-zero only over triangles (tetrahedra in three
dimensions) which contain the vertex P, thus defining the domain
of influence of node P, as shown in Figure 1, for the two-
dimensional case. To evaluate the above integrals, we make use of
the fact that ¢, and %, are constant over a triangle, and evaluate
spatial derivatives of ¢ and w over a triangle using vertex values,
by Green’s contour integral theorem. The convective fuxes F, are
taken as piecewise linear functions in Space, and the viscous fluxes
F, are piecewise constant over each triangle, since they are formed
from first derivatives in the flow variables. Evaluating the flux
integrals with these assumptions, one obtains
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where the summations are over all triangles in the domain of
influence, as shown in Figure 1. 4,5 represents the directed (nor-
mal) edge length of the face of each triangle on the outer boundary
of the domain, FA F2 are the convective fluxes at the two vertices
at either end of this edge, and F/ is the viscous flux in triangle e, e
being a triangle in the domain of influence of ¢. If the integral on
the left hand side of equation (5) is evaluated in the same manner,
the time derivatives become coupled in space. Since we are not
interested in the time-accuracy of the scheme, but only in the final
steady-state solution, we employ the concept of a lumped mass
matrix. This is equivalent to assuming w to be constant over the
domain of influence while integrating the left hand side. Hence, we
obtain
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where the factor of 1/3 is introduced by the integration of ¢ over
the domain, and 2, represents the surface area of the domain of
influence of P. For the convective fluxes, this procedure is
equivalent to the vertex finite-volume formulation described in
[2,3). For a smoothly varying regular triangulation, the above for-
mulation is second-order accurate.

Additional artificial dissipation terms are required to ensure
stability and to capture shocks without producing numerical oscilla-
tions. This is necessary for both inviscid and viscous flow compu-
ations, since in the later case, large regions of the flow-field
behave essentially inviscidly and the physical viscosity is not
sufficient to guarantee numerical stability for the type of mesh
spacings typically employed. Antificial dissipation terms are thus
constructed as a blend of a Laplacian and a biharmonic operator in
the conserved flow variables. The Laplacian term represents a
strong formally first-order accurate dissipation which is tumed on
only in the vicinity of a shock, and the biharmonic term represents
a weaker second-order accurate dissipation which is employed in
regions of smooth flow [4,5,6].

The spatially discretized equations are integrated in time to
obtain the steady-state solution. For inviscid flow calculations, a
five-stage Runge-Kutta scheme is employed for the time integra-
tion, where the convective terms are evaluated at each stage in the
time- steppmg scheme, and the dissipative terms are only evaluated
at the first two stages and then frozen for the remaining stages. A
complete multistage time-step, in which the solution is advanced
from time level n to level n+1, can be written as
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where w represents the conserved flow variables, Q is the convec- -

tive residual, D denotes the dissipative operator, and A represents
the discrete time-step. For viscous flow computations, a variant of

this scheme is employed ‘where the dissipative terms are evalualed
at the first, third and fifth stages, and frozen at ‘alternate stages.
These particular schemes have been designed to rapidly damp out
high frequency error components [4,5], which is a necessary

characteristic for a multigrid driving scheme. Convergence to

““variable at this node is then linearly distributed to the four vertices - -~

steady-state is accelerated by employing local time-stepping and
implicit residual averaging [2,3,4], which have previously been
described in the context of unstructured meshes.

4. MULTIGRID STRATEGY

The idea of a multigrid strategy is to perform time steps on
coarser meshes to calculate corrections to a solution on a fine
mesh. The advantages of time stepping on coarse meshes are two-
fold: first, the permissible time-step is much larger, since it is pro-
portional to the cell size, and secondly, the work is much less
because of the smaller number of grid points. On the finest grid of
the sequence, the flow variables are updated by the 5-stage scheme
as shown in equations (7). The residuals and flow variables arc
then transferred to the next coarser grid. If R’ represents the
transferred residuals and w’ the transferred flow variables, a forcing
function on the coarse grid can be defined as

P=R -R(w) )
Now on the coarse grid, time stepping proceeds as shown below:
w‘ﬂ = w"'" - o A (R(wf'-”) + P) )

for the q th slage In the first stage, WD reduces 1o the
transferred flow variable w’. Thus, the calculated residuals on the
coarse grid are canceled by the second term in the forcing function
P, leaving only the R’ term. This indicates that the driving force
for the solution on the coarse grid is provided by the fine grid resi-
duals. Thus we are ensured that, when the fine grid solution is
fully converged, no further corrections will be generated by the
coarser grids. This procedure is repeated on successively coarser
grids.
transferred back to the finer grids. The use of a multigrid method
with unstructured meshes presents an additional challenge. Con-
sistent coarse tetrahedral grids can no longer be formed by simply
considering subsets of the fine grid vertices. An altemative would
be to generate the fine mesh by repeatedly subdividing an initial
coarse mesh in some manner. However, generally poor topological
control of the fine mesh results from such a procedure. AnoLher
approach, known as the agglomeration technique, reconstructs
coarse grids from a given fine unstructured grid by grouping neigh-
boring elements together to form large polyhedral coarse-grid cells
[7.8]. In the present work, it has been decided to pursue an
unstructured multigrid approach in which a sequence of completely
unrelated coarse and fine meshes are employed. This approach pro-

vides great flexibility in determining the configuration of the coar-

sest and finest meshes. Coarse meshes may be designed (0 optim-
ize the speed of convergence, whereas fine meshes may be con-
structéd based on solution accuracy considerations. In general,
beginning from a fine grid, a coarser level is construcied which
contains roughly half the resolution in each coordinate direction
throughout the domain (about 1/8 the number of vertices in three
dimensions, or 1/4 in two dimensions). This process is repeated
until the coarsest grid capable of representing the geometry topol-
ogy is obtained. In the context of adaptive meshing, new finer
meshes may be added to the multigrid sequence, using any given

adaptive refinement technique, since no relation is assumed
between the various meshes of the sequence.

The key to the success of such a strategy lies in the ability to
efficiendy transfer variables, residuals and corrections back and

forth between unrelated unstructured meshes. In the presefit con- ™~
text, this is performed using linear interpolation. For each vertex--

of a given grid, the tetrahedron which contains this vertex on the
grid to which variables are to be interpolated is determined. The

" of the enclosing tetrahedron (three vertices of the enclosing triangle

in two dimensions). The main difficulty lies in efficienily deter-
mining the enclosing cell for each grid point. A naive search over
all cells would lead to an O(N? complexity algorithm, where N is
the total number of grid points, and would be more expensive than
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When the coarsest grid is reached, the corrections aré _
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the flow solution itself. In this work, a graph traversal search rou-
tine with best case complexity of O(V) is employed. The search
begins by choosing a node on one grid, and locating the enclosing
tetrahedron on the other grid. This can usually be determined a
priori, for example, by choosing the minimum x-y-z node and the
minimum x-y-z tetrahedron for the respective grids. We next chose
a new node for which the enclosing cell is to be searched, and this
node is taken as a neighbor of the previous node. As a starting
guess we choose the tetrahedron which was previously found to
enclose the first node, which is in the same vicinity as the new
node. If this cell is not found to enclose the new node, we search
the four neighbors of this cell, and then the neighbors of these
neighbors, thus traversing through the mesh until the enclosing cell
is located, at which point the process is repeated for a new node.

The interpolation pattems between the various meshes are
completely determined by assigning to each mesh vertex four inter-
polation addresses and four interpolation weights, which are all
computed in & preprocessing phase. In practice, this preprocessing
has been found to require an amount of CPU time roughly
equivalent 1o one or two flow solution cycles on the finest grid.

5. ADAPTIVITY

One of the most efficient adaptive mesh enrichment tech-
niques consists of sequential point insertion and local grid restruc-
uring. This can be achieved using Bowyer’s algorithm for
Delaunay triangulation. A Delaunay triangulation is a unique tri-
angulation (tetrahedrization in 3-D) of a given set of points which
exhibits certain desirable properties (maximizes small angles, pro-
vides a discrete maximum principle for Laplaces equation [9] eic
...). One of these properties, the empty circumcircle property, states
that no vertex from any other triangle/ietrahedron can be contained
in the circumcircle/sphere of a given triangle/tetrahedron. This pro-
perty has ofien been employed as the basis for an algorithm known
as Bowyer’s method for the generation of unstructured meshes
[10,11]. Bowyer's algorithm is also useful for adaptive mesh
refinement. Assuming we have discretized the geometry with a
Delaunay triangulationftetrahedrization, and have solved the flow
on this grid, we seck to refine the mesh in regions of high local
truncation error. The first undivided differences of some key flow
variable (density for example) are examined along every edge of

the mesh. When this difference is larger than some fraction of the
average differences across all edges of the mesh, a new point is
added midway along that edge. Each new point must be inserted
into the mesh, which must then be locally restructured accordingly.
Following  Bowyer’s  algorithm, we first locate all
riangles/ierahedra whose circumcircles/spheres are intersected by
this new point. The union of these cells are removed, as this deter-
mines the region of the mesh which must be restructured. A new
structure is then formed by joining the new point to all vertices of
the polygonalthedral cavity formed by the cell removal operation,
as shown for the two-dimensional case in Figure 2. This has been
proven 1o result in a consistent Delaunay triangulation provided the
original mesh is a Delaunay construction [11]. In cases where a
non-Delaunay triangulation is employed for the original mesh, a
consistency check must be executed after each new point is
inserted. If negative volume cells are created, the new point must
either be rejected or displaced and reinserted [12]. When new
boundary points are introduced, they are repositioned onto the ana-
lytic surface-patch definition (or spline curve definition in two
dimensions) of the geometry by recomputing the physical coordi-
nates of the new point based on the assigned parametric patch
coordinates, s and t, which are taken as the average of the
parametric coordinates of the two vertices at either end of the gen-
erating boundary edge.

6. TWO-DIMENSIONAL RESULTS

6.1. An Inviscid Case

In order to illustrate the effectiveness of the simultaneous use
of adaptive meshing and the multigrid strategy, the inviscid flow
through a two-dimensional turbine blade cascade geometry has
been computed. The particular blade geometry has been the subject
of an experimental and computational investigation at the occasion
of a VKI lecture series [13]. A total of seven meshes were used in
the multigrid algorithm, with the last three meshes generated adap-
tively, using the undivided density difference criterion. The coar-
sest mesh of the sequence contains only 51 points, while the finest
mesh, depicted in Figure 3, contains 9362 points. Extensive mesh
refingment can be seen to occur in the neighborhood of shocks, and
in other regions of high gradients. The inlet fiow incidence is 30
degrees, and the average inlet Mach number is 0.27. The flow is
tumed 96 degrees by the blades, and the average exit isentropic
Mach number is 1.3. At these conditions, the flow becomes super-
sonic as it passes through the cascade, and a complex oblique
shock wave pattern is formed. These are evident from the com-
puted Mach contours depicted in Figure 4. All shocks are well
resolved, including some of the weaker reflected shocks, which
non-adapted mesh computations often have difficulty resolving.
Details of the flow in the rounded trailing edge region of the blade,
where the flow separates inviscidly and forms a small recirculation
region, are also well reproduced. Once the first four globally gen-
erated meshes were constructed, the entire flow solution - adaptive
mesh enrichment cycle was performed three times, executing 25
multigrid cycles at each stage. This entire operation required 40

CPU scconds on a single processor of a Cray-YMP supercomputer.
The residuals on the finest mesh were reduced by two and a half
orders of magnitude, which should be adequate for engineering
calculations.

6.2. Viscous Flows

While the discretization of the viscous terms for the Navier-
Stokes equations as outined in Section 2 is relatively straight-
forward, the main difficulties involved in computing high-
Reynolds-number viscous flows relate to the grid generation and
turbuience modeling requirements. In order to efficiently resolve
the thin viscous layers encountered in such flows, highly stretched
grids with very high resolution in the direction normal 1o the flow
must be employed. Standard unstructured grid generation tech-
niques (i.e. advancing front methods [14,15), or Delaunay triangu-
lations [11,16]) generally break down when attempting to generate
such highly stretched grids (normal to streamwise resolution ratios
of 100 to 1000 are typically required). The procedure adopted in
this work is to employ one of these standard techniques ( in this
case, the Delaunay construction) in a locally mapped space, as
opposed to physical space [17]. A suitable mesh-point distribution
with the required normal and streamwise resolution must first be
obtained. This is achicved by generating a structured hyperbolic
mesh about each geometry component, and employing the union of
the points of these overlapping local structured meshes as the basis
of a Delaunay triangulation. However, a Delaunay triangulation of
a given set of points tends to produce the most equiangular trian-
gles possible, and therefore in general, is not well suited for the
generation of highly stretched mesh elements. Thus, an altemate
triangulation procedure must be employed. The approach taken
consists of defining a stretching vector (stretching magnitude and
direction) at each node of the initial point distribution throughout
the flow field. Assuming an initial triangulation has been obtained,
when a new mesh point is to be inserted, the associated stretching
vector is employed to construct a locally mapped space such that,
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within this mapped space, the local point distribution appears iso-
tropic. A Delaunay triangulation is then performed to triangulate
the new point into the mesh in this mapped space, and the resulting
triangulation is mapped back into physical space, thus resulting in
the desired stretched triangulation. Hence, a fully unstructured
mesh with highly streiched elements in the boundary layer and
wake regions, nearly cquilateral triangles in the inviscid regions of
flow, and a smooth variation of elements throughout the transition
regions is obtained. The use of fully unstructured meshes for
viscous flow calculations has been pursued, as opposed to the
hybrid structured-unsiructured meshes often advocated in the litera-
ture [18,19], due to the increased generality they afford in dealing
with geometries with close tolerances between neighboring bodies,
where confluent boundary layérs may occur, and due to the ease
with which adaptive meshing may be incorporated throughout the
viscous and inviscid regions of flow.

The use of a turbulence model is required for the practical
solution of high-Reynolds number viscous flows. The most com-
mon wrbulence models employed for acrodynamic flows are of the
algebraic type. Such models typically require information concern-
ing the distance of each point from the wall. Turbulence length
scales are determined by scanning appropriate flow variables along
specified streamwise stations. In the context of unstructured’
meshes, such information is not readily available and hence, the
implementation of algebraic turbulence models on such meshes
introduces additional complexities. The approach adopted in this
work [20] consists of generating a set of background turbulence
mesh stations. These are constructed by generating a hyperbolic
structured mesh about each geometry component, based on the
boundary-point distribution of the original unstructured mesh, and
extracting the normal lines of the mesh. When performing adap-
tive meshing, new turbulence mesh stations must be constructed for
each new adaptively generated boundary point, as illustrated in Fig-
ure 5. Each time the turbulence model is executed, the flow vari-
ables are interpolated onto the normal turbulence stations, the wr-
bulence model is executed on each station, and the resulting eddy
viscosity is interpolated back to the unstructured mesh. The
method employed for interpolating variables back and forth
between the unstructured mesh and the wrbulence mesh stations is
similar to that previously described for the unstructured multigrid
algorithm.

Figures 6 through 9 illustrate a calculation which makes use

of these various techniques to compute a complicated 1wo-
dimensional viscous flow over a high-lift multi-element airfoil.
The final mesh employed is depicted in Figure 6, and conrains &
total of 48,691 points. This mesh was obtained using the stretched
Delaunay triangulation technique previously described, followed by
two levels of adaptive refinement. The height of the smallest cells
at the wall is of the order of 2 x 10~ chords and cell aspect ratios
up to 500:1 are observed. The computed Mach number contours
for this case are depicted in Figure 7. The freestream Mach
number is 0.1995, the chord Reynolds number is 1.187 million,
and the corrected incidence is 16.02 degrees. At these conditions,
the fiow remains entirely subcritical. Compressibility effects are
nevertheless important due to the large suction peaks generated
about each airfoil. For example, in the suction peak on the upper
surface of the leading-edge slat, the local Mach number achieves a
value of 0.77. The computed surface pressure coefficients are
compared with experimental wind tunnel data [21) in Figure 8, and
good overall agreement is observed, including the prediction of the
height of the suction peaks. This case provides a good illustration
of the importance of adaptive meshing in practical acrodynamic
calculations. Adequate resolution of the strong suction peak on the
upper surface of the slat can only be achieved with a very fine
mesh resolution in this region. Failure to adequately capture this
large suction peak results in the generation of numerical entropy
which is then convected downstream, thus contaminating the solu-

tion in the downstream regions, and degenerating the global accu-
racy of the solution. Because these suction peaks are very local-
ized, they are efficiently resolved with adaptive techniques. In
order to obtain a similar resolution using global mesh refinement,
of the order of 200,000 mesh points would be required, greatly
increasing the cost of the computation. The convergence history

for this case, as measured by the density residuals and the total lift
coefficient versus the number of multigrid cycles, is depicted in
Figure 9. A total of 400 multigrid cycles were executed, which
required roughly 35 minutes of single processor CRAY-YMP time,
and 14 Mwords of memory.

The discrepancy between the computed and experimental
pressure coefficients on the trailing edge flap is due to a separated
flow condition which is not reproduced by the algebraic turbulence
model. Figure 10 compares computed and experimental lift
cocfficients at various angles of attack for a three-clement high-lift
airfoil [22). The failure of the computations to predict the max-
imum lift point are directly attributable to the inability of the tur-
bulence model to predict the onset of separation. These results
strongly indicate the need for more sophisticated turbulence model-
ing. The use of single or multiple field-equation models appears to
be the most appropriate choice for turbulent unstructured mesh
computations. Such models can be discretized in a straight-forward
manner on unstructured meshes. However, the task is now 1o
ensure that such models adequately represent the flow physics, and
that they can be solved in an efficient and robust manner. In this
work, the implementation of a standard high-Reynolds-number
k — ¢ wrbulence model with low-Reynolds-number modifications
proposed by Speziale, Abid and Anderson [23], has been pursued.
The main effort was focused on devising a technique for efficiently
solving the two turbulence equations in the context of the unstruc-
wred multigrid strategy [24]. The four flow equations and the two
turbulence equations are solved as a loosely coupled system. The

flow equations are solved explicitly, and the turbulence equations”

point-implicitly, using a time-step limit which ensures stability and
positivity of £ and e. In the context of the unswuctured multigrid
algorithm, the turbulence eddy viscosity is assumed constant on all
but the finest grid level where it is recomputed at each time-step.
The transonic flow over a two-clement airfoil configuration has
been computed using this implementation of the model. For this

case, the freestream Mach number is 0.5, the incidence is 7.5

degrees, and the Reynolds number is 4.5 million. Figures 11 and
12 depict the mesh and the solution obtained with the current
implementation of the k¥ — ¢ turbulence model. Four meshes were

employed in the muligrid sequence, with the finest mesh contain-

ing a total of 28,871 points. The convergence rates of the vanous
equations for this case are plotted in Figure 13. As can be seen,
the turbulence equations and flow equations converge at approxi-
mately the same rates. The computed flow ficld exhibits regions of
ransonic flow with a small region of separated flow at the foot of
the shock. These features appear to be well reproduced by the tur-
bulence model. Future efforts will concentrate on computationally
predicting flows with large regions of separation, such as that
inferred by Figure 8, and on modifying the model 10 berer
represent the flow physics. )

7. THREE DIMENSIONAL RESULTS o

Due to the limitations of present day supercomputers, and the
difficulties associated with generating highly streiched tetrahedral
meshes, three-dimensional computations have presendy been

confined to inviscid flows. The techniques described in the context
of two-dimensional inviscid flows extend readily to three dimen-
sions, In particular, the unstructured multigrid algorithm and the
adaptive meshing strategy have been found to be paricular
effective for three-dimensional computations [12]. As an example,
an adaptive multigrid calculaton of transonic flow about an
ONERA M6 wing is illustrated in Figures 14 through 16. The

i

mrl

R




final mesh, depicted in Figure 14, contains a total of 174,412
points and just over 1 million tetrahedral volumes. This represents
the fourth mesh in the multigrid sequence and the second adaptive
refinement level. Mesh refinement was based on the undivided gra-
dient of density. The freestream Mach number and incidence for
this case are 0.84 and 3.06 degrees respectively. The well known
double shock pattem for this case is reproduced in the computed
Mach contours of the solution in Figure 15. The leading edge
expansion and shocks are well resolved due 10 the extensive mesh
refinement in these regions. A globally refined mesh of this resolu-
tion would result in roughly 600,000 points and would thus require
3 10 4 times more computational resources. The multigrid conver-
gence rate for this case is depicted in Figure 16, where 50 cycles
were performed on the original grid, prior to adaptation, 50 cycles
on the first adapted mesh, and '100 cycles on the finest adapted
mesh. On this final mesh, the residuals were reduced by 5 orders
of magnitude over 100 cycles, requiring a total of 35 CRAY-YMP
single CPU minutes and 22 MW of memory.

7.1. Parallel Computing Results

As mentoned previously, due to their homogeneous (although
random) nature, unstructured mesh data-sets are particularly weil
suited for parallel processing. An unstructured mesh solver typi-
cally consists of a single (indirect addressed) loop over all interior
mesh elements, and another similar loop over all boundary ele-
ments. On a vector machine, each loop may be split into groups
(colors) such that within each group, no recurrences occur. Each
group can then be vectorized. A simple parallelization strategy for
a shared memory machine is to further split each group into n sub-
groups, where n is the number of available processors. Each sub-
group can then be vectorized and run in parallel on its associated
processor. Because the original number of groups is not large
(usually 20 to 30). the vector lengths within each subgroup are still
long enough to obtain the full vector speedup of the machine, for a
moderate number of processors. For more massively parallel
distributed-memory scalar machines, the entire mesh must be sub-
divided and each resulting partition associated with a single proces-
sor. On each processor, the single scalar interior and boundary
loops are then executed, with inter-processor communication occur-
ring at the beginning and end of each loop. The mesh partitioning
strategy must ensure good load balancing on all processors while
minimizing the amount of inter-processor communication required.

7.2. CRAY-YMP-8 Results

Figure 17 illustrates an unstructured mesh generated over a
three-dimensional aircraft configuration. This mesh contains a total
of 106,064 points and 575,986 tetrahedra. This represents the

second finest mesh employed in the multigrid sequence. The finest
mesh, which is not shown due to printing resolution limitations,
contains a total of 804,056 points and approximately 4.5 million
tetrahedra. This is believed to be the largest unstructured grid prob-
lem attempted to date. The inviscid flow was solved on this mesh
using all eight processors running in parallel on the CRAY-YMP
supercomputer. A total of 4 meshes were used in the multigrid
sequence. The convergence rate for this case is depicted in Figure
19. In 100 multigrid cycles, the residuals were reduced by almost 6
orders of magnitude. This run required a total of 16 minutes wall
clock time running in dedicated mode on the 8 processor CRAY-
YMP, including the time to read in all the grid files, write out the
solution, and monitor the convergence by summing and printing
out the average residual throughout the flow field at each multigrid
cycle. The total memory requirements for this job were 94 million
words. The ratio of CPU time to wall clock time was 7.7 on 8 pro-
cessors, and the average speed of calculation was 750 Mflops, as
measured by the CRAY hardware performance monitor [25]. For
this case, the freestream Mach number is 0.768 and the incidence
is 1.116 degrees. The computed Mach contours are shown in Fig-
ure 18, where good resolution of the shock on the wing is
observed, due to the large number of mesh points employed.
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7.3. Intel iPSC 860 Results

The implementation of the unstructured multigrid Euler solver
on the Intel iPSC 860 distributed memory scalar multiprocessor
machine, has been pursued using a set of software primitives
designed 1o ease the porting of scientific codes to parallel machines
[26). The present implementation was undertaken as part of a
more general project aimed at designing and constructing such
primitives with experience gained from various implementations.
The net effect of the use of such primitives is 1o relieve the pro-
grammer of most of the Iow level machine dependent software pro-
gramming tasks. The mesh was partitioned using a spectral partion-
ing algorithm which had previously been shown to produce good
load balancing and minimize inter-processor communication [27).
At present, the panitioning of the mesh is done in a preprocessing
stage on a sequential machine. At the time of writing, the fine air-
craft mesh (804,056 vertices) has not been run on the Intel
machine. Thus, results with coarser meshes are quoted. Table 1
gives an overview of the results obtained to date. A small 3600
point mesh was found to run at about 4.1 Mflops on a single Intel
iPSC 860 processor. The largest case tried to date, a 210,000 point
mesh, resulted in a 144 Mflop rate on 64 processors, which
represents an efficiency of about 55% percent, based on the single
processor results. It is anticipated that the fine 804,056 point grid,
when implemented on 512 processors, will achieve an equivalent or
greater computational speed than that observed with the full
CRAY-YMP 8-processor machine.

8. CONCLUSION

This paper has illustrated the application of unstructured mesh
techniques to various types of acrodynamic flows, and emphasized
the advantages which can be obtained for complex geometries

using adaptive meshing and parallelization. In two dimensions, a
viscous flow solution capability has been demonstrated, while in
three dimensions, efficient Euler solutions are possible. The main
problems associated with three-dimensional viscous solutions are
related to the development of reliable grid generation strategies,
particularly with regards to the generation of highly streiched
tetrahedral elements for capturing thin viscous layers. Turbulence
modeling is also a limiting factor, although this difficulty is not
particular to the field of unstructured meshes. Future work should
also concentrate on more complete parallelization of the entire
solution process, including items such as grid generation, partition-
ing, and adaptive meshing.
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Figure 11: Global View of Coarse Unstructured Mesh and Close-Up
View of Fine Unstructured Mesh Employed for Computing Flow Past a
Two-Element Airfoil (Coarse Mesh Points = 7272, Fine Mesh Points =
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Figure 12: Computed Mach Contours Using Low-Reynolds Number
Modification for Turbulence Equations for Supercritical Flow over a
Two-Element Airfoil Mach = 0.5, Re
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Figure 14: Finest Adapted Mesh Generated About ONERA M6 Wing with Single Nacelle; Number of Points = 106,064, Number of Tetrahedra
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Figure 15: Computed Mach Contours on the Adaptively Generated Mesh
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Figure 18: Mach Contours for Flow over Aircraft Configuration Com-
puted on Fine Mesh of 804,056 Vertices and 4.5 million Tetrahedra i
(Mach = 0.768, Incidence = 1.116 degrees)
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Size Number of Processors

Mesh 1 2 8| 16 64
Mflops 4.1] 7.1/16.9]17.4 -
3600 | comp/iter(s) | 4.6| 2.4| 0.6]0.34 -

comm/iter(s) -10.250.48|0.73 -

Mflops - -123.8|38.8

26K | comp/iter(s) - -| 45| 2.3

comm /iter(s) - -1 1.1} 1.1

Mflops - - - -1144.3
210K | comp/iter(s - - - -1 4.75
_|comm/iter(s) -l - - -l 23

Table 1: Obse -+ Or - stional Rates and Timings per lieration of
Computatic 12} v+—. i Communication Overhead for Various Sizes of
Unstructured Meshes on Intel iPSC/860
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